The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH.

نویسندگان

  • D M Czajkowsky
  • H Iwamoto
  • T L Cover
  • Z Shao
چکیده

Pathogenic strains of Helicobacter pylori secrete a cytotoxin, VacA, that in the presence of weak bases, causes osmotic swelling of acidic intracellular compartments enriched in markers for late endosomes and lysosomes. The molecular mechanisms by which VacA causes this vacuolation remain largely unknown. At neutral pH, VacA is predominantly a water-soluble dodecamer formed by two apposing hexamers. In this report, we show by using atomic force microscopy that below pH approximately 5, VacA associates with anionic lipid bilayers to form hexameric membrane-associated complexes. We propose that water-soluble dodecameric VacA proteins disassemble at low pH and reassemble into membrane-spanning hexamers. The surface contour of the membrane-bound hexamer is strikingly similar to the outer surface of the soluble dodecamer, suggesting that the VacA surface in contact with the membrane is buried within the dodecamer before protonation. In addition, electrophysiological measurements indicate that, under the conditions determined by atomic force microscopy for membrane association, VacA forms pores across planar lipid bilayers. This low pH-triggered pore formation is likely a critical step in VacA activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.

The Helicobacter pylori vacuolating toxin VacA causes several effects on mammalian cells in vitro, including intracellular vacuolation, formation of pores in the plasma membrane and apoptosis. When added to cells, VacA becomes associated with detergent-resistant membranes, indicating that it binds preferentially to lipid rafts. In the present study, we have used atomic force microscopy to exami...

متن کامل

Vacuolating Cytotoxin of Helicobacter pylori

Vacuolating cytotoxin (VacA) is one of the most important virulence factors of H. pylori (Hp), which isthe only toxic protein that is secreted from Hp cell into the culture supernatant. The effects of VacA oneukaryotic systems is the subject of many previous and on going research studies. Intracellular targetsfor this toxin include: late endosomal and lysosomal compartments, m...

متن کامل

Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity.

The vacuolating toxin VacA, a major determinant of Helicobacter pylori-associated gastric diseases, forms anion-selective channels in artificial planar lipid bilayers. Here we show that VacA increases the anion permeability of the HeLa cell plasma membrane and determines membrane depolarization. Electrophysiological and pharmacological approaches indicated that this effect is due to the formati...

متن کامل

Structure and interaction of VacA of Helicobacter pylori with a lipid membrane.

In its mature form, the VacA toxin of Helicobacter pylori is a 95-kDa protein which is released from the bacteria as a low-activity complex. This complex can be activated by low-pH treatment that parallels the activity of the toxin on target cells. VacA has been previously shown to insert itself into lipid membranes and to induce anion-selective channels in planar lipid bilayers. Binding of Vac...

متن کامل

Membrane channel structure of Helicobacter pylori vacuolating toxin: role of multiple GXXXG motifs in cylindrical channels.

Helicobacter pylori is a human pathogen responsible for severe gastric diseases such as peptic ulcers, gastric adenocarcinoma, and gastric lymphoma. Vacuolating toxin (VacA) is crucial in facilitating the colonization of the gastric lining by inducing cell apoptosis and immune suppression. VacA inserts into membranes and forms a hexameric, anion-selective pore. Here we present a structural mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 5  شماره 

صفحات  -

تاریخ انتشار 1999